10 research outputs found

    Extensions and degenerations of spectral triples

    Full text link
    For a unital C*-algebra A, which is equipped with a spectral triple and an extension T of A by the compacts, we construct a family of spectral triples associated to T and depending on the two positive parameters (s,t). Using Rieffel's notation of quantum Gromov-Hausdorff distance between compact quantum metric spaces it is possible to define a metric on this family of spectral triples, and we show that the distance between a pair of spectral triples varies continuously with respect to the parameters. It turns out that a spectral triple associated to the unitarization of the algebra of compact operators is obtained under the limit - in this metric - for (s,1) -> (0, 1), while the basic spectral triple, associated to A, is obtained from this family under a sort of a dual limiting process for (1, t) -> (1, 0). We show that our constructions will provide families of spectral triples for the unitarized compacts and for the Podles sphere. In the case of the compacts we investigate to which extent our proposed spectral triple satisfies Connes' 7 axioms for noncommutative geometry.Comment: 40 pages. Addedd in ver. 2: Examples for the compacts and the Podle`s sphere plus comments on the relations to matricial quantum metrics. In ver.3 the word "deformations" in the original title has changed to "degenerations" and some illustrative remarks on this aspect are adde

    Matrix Compactification On Orientifolds

    Get PDF
    Generalizing previous results for orbifolds, in this paper we describe the compactification of Matrix model on an orientifold which is a quotient space as a Yang-Mills theory living on a quantum space. The information of the compactification is encoded in the action of the discrete symmetry group G on Euclidean space and a projective representation U of G. The choice of Hilbert space on which the algebra of U is realized as an operator algebra corresponds to the choice of a physical background for the compactification. All these data are summarized in the spectral triple of the quantum space.Comment: 28 pages, late

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore